# **IR3Y30M/M1**

# CCD Signal Processors for B/W CCD Cameras

#### **DESCRIPTION**

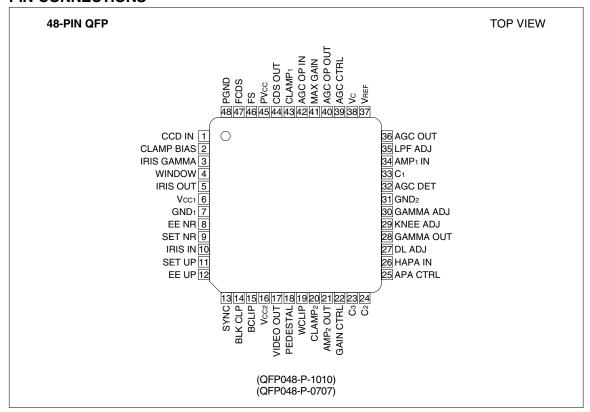
The IR3Y30M/M1 are bipolar single-chip signal processing ICs with built-in low-pass filter and delay line for B/W video cameras. They realize both downsizing and cost reduction of the finished set.

#### **FEATURES**

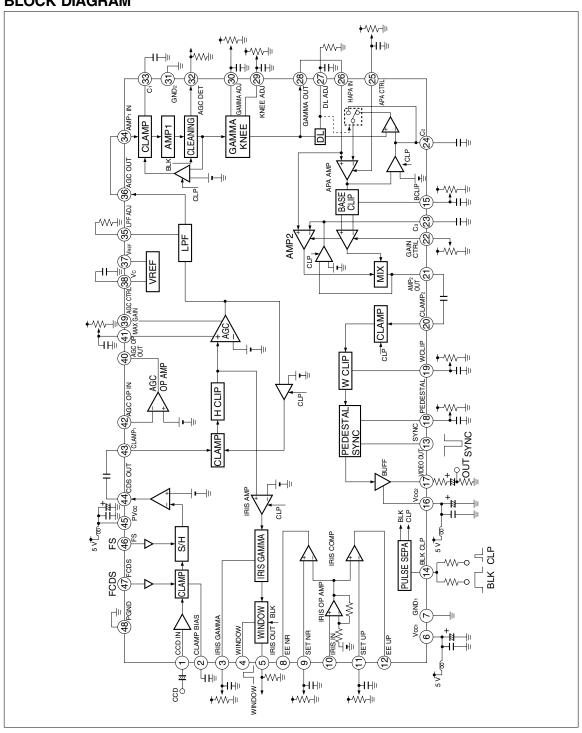
• Low power consumption : 265 mW (TYP.)

• Wide AGC range: -3 to +29 dB

• High speed sample-and-hold circuits : pulse width 15 ns (MIN.)


- Signal processing from CCD output to 75  $\Omega$  video output is possible
- Built-in low-pass filter
- Built-in comparator for electronic exposure control
- · Built-in aperture circuit and delay line
- Single +5 V power supply
- Packages

- IR3Y30M : 48-pin QFP (QFP048-P-1010)- IR3Y30M1 : 48-pin QFP (QFP048-P-0707)0.5 mm pin-pitch


#### COMPARISON TABLE

|                       | IR3Y30M                    | IR3Y30M1                   |
|-----------------------|----------------------------|----------------------------|
| Package               | 48-pin QFP (QFP048-P-1010) | 48-pin QFP (QFP048-P-0707) |
| Power consumption     | 725 mW                     | 560 mW                     |
| PD derating ratio     | 5.8 mW/°C                  | 4.5 mW/°C                  |
| Operating temperature | −30 to +75 °C              | −30 to +70 °C              |

### **PIN CONNECTIONS**



# **BLOCK DIAGRAM**



# **PIN DESCRIPTION**

| PIN NO. | PIN NAME      | VOLTAGE | EQUIVALENT CIRCUIT | DESCRIPTION                                                                                                                                       |
|---------|---------------|---------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | CCDIN         | 2.5 V   | Vcc1 \$25 k \$9 k  | Input for the signal from CCD area sensor. 2.5 V bias applied internally.                                                                         |
| 2       | CLAMP<br>BIAS | 2.9 V   | Vcc1               | Feed through level of the input signal is clamped to this pin voltage. 2.9 V bias applied internally. Connect capacitor between this pin and GND. |
| 3       | IRIS<br>GAMMA | 3.1 V   | Vcc1               | Gamma adjustment of the exposure circuit. This pin is preset to 3.1 V, and gamma becomes 0.45 at open.                                            |
| 4       | WINDOW        |         | Vcc1               | Window pulse input for the exposure circuit. Outputs the signal while "H".                                                                        |
| 5       | IRIS OUT      | 2.3 V   | Vcc1               | Output for the exposure signal.  Connect a resistor between this pin and GND.                                                                     |

| PIN NO. | PIN NAME VOLTAGE | EQUIVALENT CIRCUIT | DESCRIPTION                                                                              |
|---------|------------------|--------------------|------------------------------------------------------------------------------------------|
| 6       | VCC1             |                    | Power supply for analog circuits.                                                        |
| 7       | GND1             |                    | Ground for analog circuits.                                                              |
| 8       | EE NR            | Vcc1               | Comparator output for electronic exposure control.                                       |
| 9       | SET NR           | Vcc1               | High reference voltage input of the comparator for electronic exposure control.          |
| 10      | IRIS IN          | 200                | Input of the amplifier for electronic exposure control. This amplifier has 5 times gain. |
| 11      | SET UP           | GND                | Low reference voltage input of the comparator for electronic exposure control.           |
| 12      | EE UP            | Vcc1 = 50 k        | Output of the comparator for electronic exposure control.                                |
| 13      | SYNC             | Vcc1               | Synchronous signal input.                                                                |

| PIN NO. | PIN NAME  | VOLTAGE | EQUIVALENT CIRCUIT            | DESCRIPTION                                                                                                                                        |
|---------|-----------|---------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 14      | BLK CLP   |         | Vcc1 40 µ GND                 | Composite pulse input. (pulse for optical black clamp and pulse for blanking)                                                                      |
| 15      | BCLIP     |         | Vcc1                          | Adjustment for the base clip level in the aperture circuit. Eliminates the low-level noise of aperture signal. When opened, base clip is canceled. |
| 16      | VCC2      |         |                               | Power supply for output amplifier circuits.                                                                                                        |
| 17      | VIDEO OUT | 1.5 V   | Vcc2                          | Video signal output. At 75 Ω terminated : 1 Vp-p (Synchronous level 0.3 Vp-p)                                                                      |
| 18      | PEDESTAL  | 2.5 V   | Vcc2  45 k 5 k  W  100 μ  GND | Blanking level adjustment.  100 mV when opened.                                                                                                    |

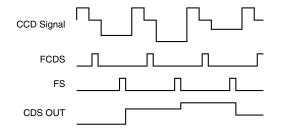
| PIN NO. | PIN NAME     | VOLTAGE | EQUIVALENT CIRCUIT                         | DESCRIPTION                                                                                                                                    |
|---------|--------------|---------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 19      | WCLIP        | 3.3 V   | VCC2  35 k  15 k  W  9  6 50 μ  100 μ  GND | White clip adjustment. 120% when opened.                                                                                                       |
| 20      | CLAMP2       | 2.3 V   | VCC2                                       | Input for encoder circuit. Black level of input signal is clamped to 2.3 V.                                                                    |
| 21      | AMP2 OUT     | 1.0 V   | Vcc1 = 100 = 100                           | Output for the gain control amplifier.                                                                                                         |
| 22      | GAIN<br>CTRL | 2.5 V   | VCC1<br>39 k<br>10 k<br>1.8 k<br>200 μ     | Controls the output amplitude at pin No. 21. Gain is controlled in the range from 6 to 12 dB. It is approximately 10 dB when this pin is open. |
| 23      | Сз           | 1.8 V   | Vcc1                                       | Feedback clamp detector. Connect capacitor between this pin and GND.                                                                           |

| PIN NO. | PIN NAME     | VOLTAGE | EQUIVALENT CIRCUIT     | DESCRIPTION                                                                                                                                                    |
|---------|--------------|---------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 24      | C2           | 1.8 V   | Vcc1                   | Feedback clamp detector. Connect capacitor between this pin and GND. When the external DL circuit is used, this will be input pin to make the aperture signal. |
| 25      | APA CTRL     | 1.8 V   | VCC1                   | Adjustment for the horizontal aperture amount. It is approximately 12 dB when this pin is open.                                                                |
| 26      | HAPA IN      |         | VCC1 200 µ 0 100 µ GND | Input for signal from pin 28. This signal is used as a main signal when aperture signals are mixed.                                                            |
| 27      | DL ADJ       | 1.2 V   | Vcc1<br>200            | Adjustment for built-in delay line. When 200 k $\Omega$ resistor is connected between this pin and GND, delay line can be turned off.                          |
| 28      | GAMMA<br>OUT | 2.3 V   | Vcc1 (220 μ (30 μ))    | Gamma and knee processed signal output.                                                                                                                        |

| PIN NO. | PIN NAME         | VOLTAGE | EQUIVALENT CIRCUIT                                | DESCRIPTION                                                                |
|---------|------------------|---------|---------------------------------------------------|----------------------------------------------------------------------------|
| 29      | KNEE ADJ         | 2.8 V   | Vcc1                                              | Knee adjustment. 120% when opened.                                         |
| 30      | GAMMA<br>ADJ     | 2.0 V   | Vcc1 \$\frac{10 k}{200 μ} \$\frac{100 μ}{100 μ}\$ | Gamma correction adjustment. 0.7 when opened.                              |
| 31      | GND <sub>2</sub> |         |                                                   | Ground for analog circuits.                                                |
| 32      | AGC DET          | 2.0 V   | Vcc1                                              | Signal output for AGC control.  Connect resistor between this pin and GND. |
| 33      | C1               | 2.0 V   | Vcc1<br>33<br>1 p                                 | Feedback clamp detector. Connect capacitor between this pin and GND.       |
| 34      | AMP1 IN          |         | Vcc1<br>≥10 k<br>170 µ ≥250 µ<br>GND              | Input for gamma and knee signal process.                                   |

| PIN NO. | PIN NAME | VOLTAGE | EQUIVALENT CIRCUIT                                   | DESCRIPTION                                                                                                                                    |
|---------|----------|---------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 35      | LPF ADJ  |         | Vcc1                                                 | Adjustment for built-in LPF characteristic. When connected resistor is 220 k $\Omega$ or more between this pin and GND, LPF can be turned off. |
| 36      | AGC OUT  | 2.3 V   | Vcc1 100 36 400 µ                                    | AGC signal output.                                                                                                                             |
| 37      | VREF     | 2.0 V   | Vcc1 200 37 GND                                      | Reference voltage.                                                                                                                             |
| 38      | Vc       | 2.0 V   | Vcc1<br>\$22 k<br>200<br>₩<br>\$8 k<br>\$20 k<br>GND | Bias for reference voltage. Connect capacitor between this pin and GND.                                                                        |
| 39      | AGC CTRL |         | Vcc1<br>39<br>↓ 5 k<br>⊕ 50 µ<br>⊕ GND               | Gain control for AGC amplifier. Be sure to input the voltage within the range from 2 to 4 V.                                                   |

| PIN NO. | PIN NAME      | VOLTAGE | EQUIVALENT CIRCUIT                  | DESCRIPTION                                                                                                                                                                     |
|---------|---------------|---------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 40      | AGC OP<br>OUT |         | Vcc1 200 GND                        | Output of the operation at amplifier for AGC control.                                                                                                                           |
| 41      | MAX<br>GAIN   | 3.3 V   | VCC1 22 k 28 k 28 k 250 µ 200 µ GND | Adjustment for AGC amplifier maximum gain. Maximum gain is 18 dB when opened. When applied voltage is 0.62 V or less, AGC circuit turns off and the amplifier is fixed to 0 dB. |
| 42      | AGC OP<br>IN  |         | Vcc1                                | The operational amplifier for AGC control.                                                                                                                                      |
| 43      | CLAMP1        | 2.0 V   | Vcc1                                | Input of AGC amplifier. Black level is clamped at 2.0 V.                                                                                                                        |
| 44      | CDS OUT       | 2.4 V   | Vcc1 100 44 47 550 μ GND            | CDS signal output.                                                                                                                                                              |


| PIN NO. | PIN NAME | VOLTAGE | EQUIVALENT CIRCUIT                | DESCRIPTION                               |
|---------|----------|---------|-----------------------------------|-------------------------------------------|
| 45      | PVcc     |         |                                   | Power supply for pulse circuits.          |
| 46      | FS       |         | PVcc (100 µ PGND)                 | Pulse input for sample-hold.              |
| 47      | FCDS     |         | PVcc (200 µ ) 200 p (200 p ) PGND | Pulse input for feed-through level clamp. |
| 48      | PGND     |         |                                   | Ground for pulse circuits.                |

SHARP IR3Y30M/M1

#### **FUNCTIONAL OPERATION**

#### **CDS Circuit**

The feed-through level of the input signal is clamped by the clamp circuit. Then the signal period is sampled and other periods are held by the sample and hold circuit, so that signals can be obtained.



## **Highlight Clip Circuit**

Before the AGC circuit, excessive signals of more than approximately 0.5 Vp-p are clipped.

## AGC Amplifier Circuit

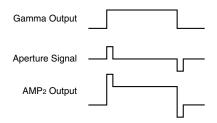
The amplitude of output signals from the AGC amplifier is externally detected and the gain is controlled with control signals from the AGC operational amplifier. Decreasing voltage at pin 41 to 0.62 V or less causes the amplifier to be fixed to 0 dB.

#### LPF Circuit

The characteristics can be controlled with an external resistor at pin 35. Increasing the resistor to 220 k $\Omega$  or more allows signals passing over the LPF to be output.

#### Gamma and Knee Corrections Circuits

In order to comply with the characteristics of CRT, the high-bright part is suppressed. Pin 29 and 30 can be used to control this suppression. If voltage at pin 30 is increased to 4 V or more gamma will be 1.


### **Exposure Circuit**

Signals which have not been processed by AGC are amplified, suppressed by gamma correction, and then output. Control signals can be generated by inputting the above signals to pin 10 after detecting them.

## **Aperture Circuit**

The video articulation can be increased by enhancing the signal contour. If the built-in delay line is not used, it can be turned off by using an external resistor of minimum 200 k $\Omega$  at pin 27.

To control the aperture amount, use a base clip.



## **Output Circuit**

A load of 75  $\Omega$  can be driven directly. In addition, the pedestal level can be controlled vertically.

#### **CAUTIONS**

- To control the aperture amount, apply base clip by controlling pin 15.
- Avoid connecting or disconnecting an external resistor at pin 27 to prevent the malfunction of the built-in delay line.
- Use the shortest possible distance to connect the bypass capacitors between the power supply and GND pins. The addition or removal of any external component should be determined by how the existing components are mounted.
- This device is electronically sensitive. Handle only at electrostatically safe work stations.

# **ABSOLUTE MAXIMUM RATINGS**

(Unless otherwise specified, TA = +25 °C)

| PARAMETER                 | CVMDOL            | CONDITIONS                            | RATING             |            | LINUT |  |
|---------------------------|-------------------|---------------------------------------|--------------------|------------|-------|--|
| PARAMETER                 | SYMBOL CONDITIONS |                                       | IR3Y30M            | IR3Y30M1   | UNIT  |  |
| Supply voltage            | VCC1, VCC2        |                                       |                    | 7          | V     |  |
| Supply voltage            | PVcc              |                                       | -                  | 7          |       |  |
| lanut valta sa            | VIA               | Except for pins 46 (FS) and 47 (FCDS) | Vcc                |            | V     |  |
| Input voltage             | VIP               | Pins 46 (FS) and 47 (FCDS)            | -0.2 to PVcc + 0.2 |            | V     |  |
| Comparator output voltage | VsD               |                                       | Vcc                |            | V     |  |
| Power consumption         | PD                | Ta ≤ +25 °C                           | 725                | 560        | mW    |  |
| PD derating ratio         |                   | Ta > +25 °C                           | 5.8                | 4.5        | mW/°C |  |
| Operating temperature     | TOPR              |                                       | -30 to +75         | -30 to +70 | °C    |  |
| Storage temperature       | Тѕтс              |                                       | −55 to             | +150       | °C    |  |

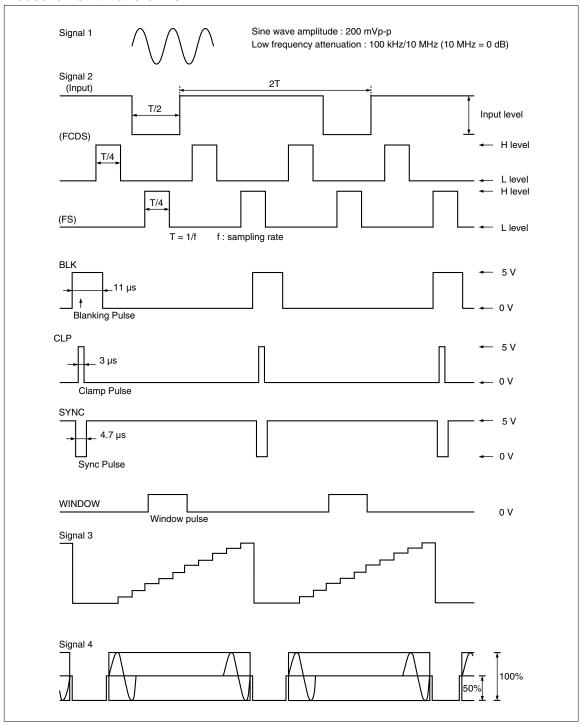
# **RECOMMENDED OPERATING CONDITIONS**

| PARAMETER                 | SYMBOL | APPLICABLE PINS                        | RATING       | UNIT  |
|---------------------------|--------|----------------------------------------|--------------|-------|
| Supply voltage            | Vcc    | Pins 6 (Vcc1), 16 (Vcc2) and 45 (PVcc) | 4.75 to 5.25 | V     |
| H-aperture signal         | VH-AP  | Pin 26 (HAPA IN)                       | 600 (MAX.)   | mVp-p |
| Standard CCD input signal | Vccd   | Pin 1 (CCD IN)                         | 200 (TYP.)   | mVp-p |
| Clamp pulse width         | tFS    | Pin 46 (FS)                            | 15 (MIN.)    | ns    |
| Sample-hold pulse width   | tFCDS  | Pin 47 (FCDS)                          | 15 (MIN.)    | ns    |

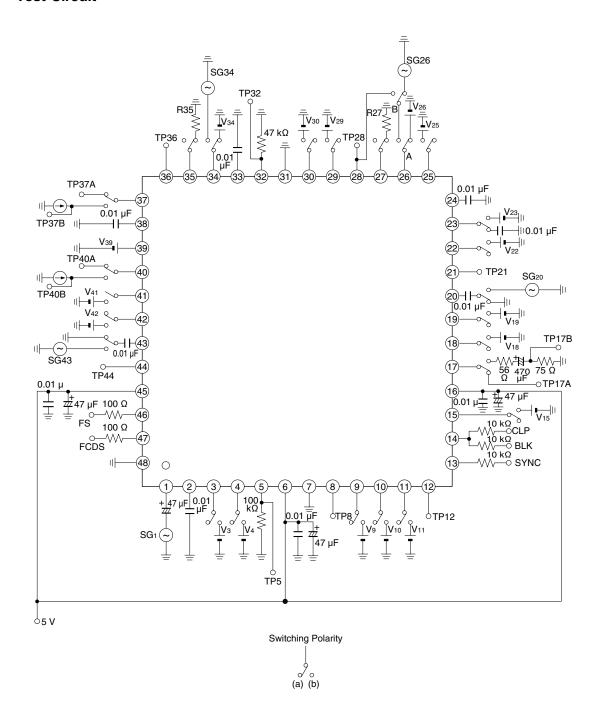
# **ELECTRICAL CHARACTERISTICS**

(Unless otherwise specified, TA = +25 °C, Vcc = 5.0 V, SW conditions $\rightarrow$ (a), V26 = 2.3 V, V34 = 2.0 V, V39 = 3 V, R27 = 30 k $\Omega$ , R35 = 22 k $\Omega$ )

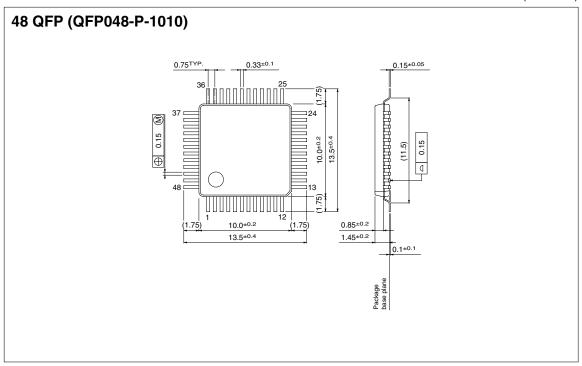
| PARAMETER                 | SYMBOL        | CONDITIONS                                                                                                                                      |                        | MIN.      | TYP. | MAX. | UNIT |
|---------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------|------|------|------|
| Supply current            | ICC1          | Measure pin 6 (Vcc1).                                                                                                                           |                        |           | 43.0 | 54.5 | mA   |
|                           | ICC2          | Measure pin 16 (Vcc2).                                                                                                                          |                        |           | 5.7  | 7.8  | mA   |
|                           | Іссз          | Measure pin 45 (PVcc).                                                                                                                          |                        |           | 4.3  | 5.4  | mA   |
| CDS Circuit               |               |                                                                                                                                                 |                        | •         | •    | •    |      |
|                           |               | With signal 1 applied to SG1, measure the                                                                                                       |                        |           |      |      |      |
| Low from Longy            |               | signal attenuation on TP44. FS = 5 V, FCDS                                                                                                      |                        |           |      |      |      |
| Low frequency             | GLF           | = Signal 2 (FCDS), VA = TP44 amplitude (f =                                                                                                     |                        |           | -30  | -25  | dB   |
| attenuation               |               | 100 kHz), Vв = TP44 amplitu                                                                                                                     | de (f = 10 MHz)        |           |      |      |      |
|                           |               | GLF = 20*LOG (VA/VB)                                                                                                                            |                        |           |      |      |      |
|                           |               | Signal 2 applied to SG1, FS and FCDS,                                                                                                           |                        |           |      |      |      |
| Gain                      | Gcds          | measure the amplitude on TP44.                                                                                                                  |                        | -2        | 0    | 2    | dB   |
|                           |               | SG1 = 200 mVp-p, f = 10 MHz                                                                                                                     |                        |           |      |      |      |
| Clamp bias                | VCP/BIAS      |                                                                                                                                                 |                        | 2.7       | 2.9  | 3.1  | V    |
| AGC Operational An        | nplifier Circ | cuit                                                                                                                                            |                        |           |      |      |      |
| Lawlayal                  | AOPL          | TP40B. SW40, SW42→(b) V42 = 1 V,                                                                                                                | V42 = 3 V,             |           | 1.0  | 1.0  |      |
| Low level                 |               |                                                                                                                                                 | $140 = +200 \mu A$     |           |      | 1.2  | .,   |
| High level                | Аорн          |                                                                                                                                                 | V42 = 1 V,             | 3.9 4.1   |      | V    |      |
|                           |               |                                                                                                                                                 | $I_{40} = -200  \mu A$ |           | 7.1  |      |      |
| <b>Exposure Operation</b> |               |                                                                                                                                                 |                        |           |      |      |      |
|                           | Gop           | With V <sub>10</sub> = 2.3 V, measure the voltage of V <sub>9a</sub> (TP8 : L $\rightarrow$ H) and V <sub>11a</sub> (TP12 : H $\rightarrow$ L). |                        | 0.40      | 0.46 | 0.51 | V    |
|                           |               |                                                                                                                                                 |                        |           |      |      |      |
| Operational amplifier     |               | With V <sub>10</sub> = 2.4 V, measure the voltage of V <sub>9b</sub>                                                                            |                        |           |      |      |      |
| gain                      |               | (TP8 : L→H) and V <sub>11b</sub> (TP12 : H→L).                                                                                                  |                        |           |      |      |      |
|                           |               | GOP = (V9b-V9a) or (V11b-V11a)                                                                                                                  |                        |           |      |      |      |
|                           |               | SW9, SW10, SW11→(b)                                                                                                                             |                        |           |      |      |      |
| Comparator law laval      | l lopl        | Change the voltage of V9 and                                                                                                                    | d V11, and             |           | 0    | 0.2  |      |
| Comparator low level      |               | measure the voltage on TP8 and TP12.                                                                                                            |                        |           | 0    | 0.2  | V    |
| I link lavel              | Іорн          | V <sub>10</sub> = 2.3 V<br>SW9, SW10, SW11→(b)                                                                                                  |                        | 4.70 4.95 |      | V    |      |
| High level                |               |                                                                                                                                                 |                        | 4.70      | 4.95 |      |      |
| AGC Circuit               |               |                                                                                                                                                 |                        |           |      |      |      |
| Highlight clip level      | HcL           | Change the amplitude of signal 3 which is                                                                                                       |                        |           |      |      |      |
|                           |               | applied to SG43, and measure the amplitude                                                                                                      |                        | 0.4       | 0.5  | 0.6  | Vp-p |
|                           |               | on TP36 when TP36's output signal is clipped.                                                                                                   |                        |           |      |      |      |
|                           |               | SW43, SW41→(b), Pulse→CLP, V41 = 0 V,                                                                                                           |                        |           |      |      |      |
|                           |               | R35 = 220 kΩ                                                                                                                                    |                        |           |      |      |      |

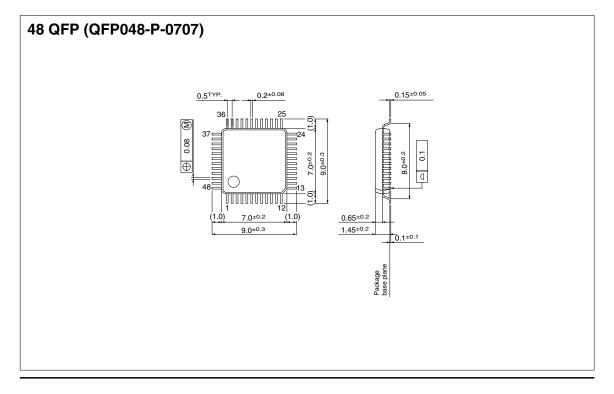

| PARAMETER                    | SYMBOL          | CONDITIONS                                                                                                                                                                                                                                        |                                                                              | MIN.  | TYP.  | MAX. | UNIT    |  |
|------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------|-------|------|---------|--|
| AGC circuit (contd.)         | I               |                                                                                                                                                                                                                                                   |                                                                              |       | •     |      |         |  |
| AGC maximum gain (1)         | <b>G</b> AMAX1  | Apply signal 3 to SG43 and measure the amplitude on                                                                                                                                                                                               | SG43 = 20 mVp-p<br>V39 = 4 V, V41 = 5 V                                      | 27    | 29    | 31   |         |  |
| AGC maximum gain (2)         | <b>G</b> AMAX2  | TP36.<br>GA1 to GA4 = 20*LOG                                                                                                                                                                                                                      | SG43 = 20 mVp-p<br>V <sub>39</sub> = 4 V, SW41→(a)                           | 15.5  | 18.0  | 20.5 |         |  |
| AGC minimum gain             | Gamin           | (TP36 amplitude/SG43 amplitude)                                                                                                                                                                                                                   | SG43 = 400 mVp-p<br>V39 = 2 V, V41 = 5 V                                     | -6.5  | -3.5  | -0.5 | dB<br>5 |  |
| AGCOFF gain                  | GAOFF           | SW41, SW43→(b),<br>Pulse→CLP, R35 = 220 kΩ                                                                                                                                                                                                        | SG43 = 200 mVp-p<br>V39 = 4 V, V41 = 0 V                                     | -2    | 0     | 2    |         |  |
| Output dynamic range         | Da              | Apply signal 3 to SG43 and measure the amplitude on TP36. SG43 = 50 mVp-p, SW41, SW43 $\rightarrow$ (b), Pulse $\rightarrow$ CLP, V39 = 4 V, V41 = 5 V, R35 = 220 k $\Omega$                                                                      |                                                                              |       | 0.75  |      | Vp-p    |  |
| Frequency characteristic (1) | fA1             | Apply signal 4 to SG43. Increase the frequency of signal 4 until the frequency components of the signal on                                                                                                                                        | SG43 = 10 mVp-p<br>R35 = 22 kΩ<br>V39 = 4 V                                  | 3.5   | 4.5   |      | MHz     |  |
| Frequency characteristic (2) | fA2             | TP36 are 3 dB lower than that at f = 100 kHz, and measure the frequency of signal 4. SW41→(b), Pulse→CLP, V41 = 5 V                                                                                                                               | SG43 = 200 mVp-p<br>R35 = 220 kΩ                                             | 7.0   | 10.0  |      | IVITIZ  |  |
| Frequency characteristic (3) | fАЗ             | When measuring case (2), adjust the V39 such that the amplitude of the output on TP36 is 200 mVp-p.                                                                                                                                               | SG43 = 10  mVp-p<br>$R35 = 22 \text{ k}\Omega$<br>V39 = 4  V<br>f = 9.5  MHz |       | -35   | -25  | dB      |  |
| AGC ON/OFF switching voltage | Vagc            | Apply signal 3 to SG43, change V41, and measure the voltage of V41 when the gain on TP36 changes from −3.5 to 0 dB. The gain on TP36: 20*LOG (TP36 amplitude/SG43 amplitude) SG43 = 400 mVp-p, SW43, SW41→(b), Pulse→CLP, V39 = 2 V, R35 = 220 kΩ |                                                                              | 0.4   | 0.6   | 0.8  | ٧       |  |
| Reference voltage 1          | VREF            | Measure the voltage on TP37A.                                                                                                                                                                                                                     |                                                                              | 1.84  | 1.94  | 2.04 | ٧       |  |
| Reference voltage 2          | ΔVREF2          | With I <sub>37</sub> = +500 μA, measure the change in voltage on TP37B.<br>SW37→(b)                                                                                                                                                               |                                                                              | 0     | 0.15  | 0.30 | ٧       |  |
| Reference voltage 3          | Δ <b>V</b> REF3 | With $I_{37} = -500 \mu\text{A}$ , measure the change in voltage on TP37B. SW37 $\rightarrow$ (b)                                                                                                                                                 |                                                                              | -0.30 | -0.15 | 0    | V       |  |

| PARAMETER             | SYMBOL          | CONDITIONS                                      |                    | MIN. | TYP. | MAX. | UNIT  |
|-----------------------|-----------------|-------------------------------------------------|--------------------|------|------|------|-------|
| Exposure Circuit      |                 |                                                 |                    |      |      |      |       |
| E AMD                 | 0.              | Apply signal 3 to SG43 and                      | SG43 = 200 mVp-p   | 40.5 | 44.5 | 40.5 | ın    |
| Exposure AMP gain     | Gı              | measure the amplitude on                        | V3 = 5 V, V4 = 5 V | 10.5 | 11.5 | 12.5 | dB    |
| Gamma output level    | γPRE            | TP5.                                            | SW3→(a)            | 0.25 | 0.32 | 0.40 | Vp-p  |
| Output dynamic        | Dı              | SW3, SW4, SW43→(b),                             | SG43 = 800 mVp-p   | 1.5  | 1.9  |      | \/n n |
| range                 | וט              | Pulse→CLP, BLK                                  | V3 = 5 V, V4 = 5 V | 1.5  | 1.9  |      | Vp-p  |
| Black level           | Ві              | Measure the voltage on TP5.                     |                    | 2.15 | 2.30 | 2.45 | v     |
| Diack level           | Di              | SW4→(b), Pulse→CLP, BLK, V4 = 0 V               |                    | 2.13 | 2.50 | 2.45 | v     |
| Black level offset 1  | BIOFF1          | Measure the voltage on TP5.                     | V4 = 5 V           | -50  | 0    | 50   | mV    |
| Black level offset 2  | BIOFF2          | SW4→(b), Pulse→CLP, BLK                         | V4 = 0 V           | -50  | 0    | 50   | 111 V |
|                       |                 | Apply signal 4 to SG43. Incre                   | ase the            |      |      |      |       |
|                       |                 | frequency of signal 4 until the                 | frequency          |      |      |      |       |
| Frequency             |                 | components of the signal on TP5 are 3 dB        |                    |      |      |      |       |
| characteristic        | fı              | lower than that at f = 100 kHz, and measure     |                    | 0.7  | 1.1  |      | MHz   |
| Characteristic        |                 | the frequency of signal 4.                      |                    |      |      |      |       |
|                       |                 | SG43 = 200 mVp-p, V4 = 5 V,                     |                    |      |      |      |       |
|                       |                 | SW4, SW43→(b), Pulse→CLP, BLK                   |                    |      |      |      |       |
| Window OFF output     | Owoff           | Apply signal 3 to SG43 and measure the          |                    |      |      |      |       |
| level                 |                 | amplitude on TP5. SG43 = 200 mVp-p,             |                    |      | 40   | 70   | mVp-p |
| ievei                 |                 | SW4, SW43→(b), Pulse→CLP, BLK, V4 = 0 V         |                    |      |      |      |       |
|                       | Vw              | Same as in the window OFF output level          |                    |      |      |      |       |
| Window ON switching   |                 | measurement. Increase V4, and measure V4        |                    | 1.2  | 1.4  | 1.6  | V     |
| voltage               |                 | when the amplitude of output signal on TP5 is   |                    |      |      |      |       |
|                       |                 | not changed.                                    |                    |      |      |      |       |
| Window input current  | lw              | With $V_4 = 5 V$ , measure input                | current on pin 4.  | 0.5  | 1.2  | 3.0  | μA    |
| window input current  |                 | SW4→(b)                                         |                    | 0.5  |      |      |       |
| AMP1 Circuits         |                 |                                                 |                    |      |      |      |       |
| İ                     | Gамр1           | Apply signal 3 to SG34 and n                    | neasure the        |      |      |      |       |
| AMP1 gain             |                 | amplitude on TP32. SW34→(b), Pulse→CLP,         |                    | 13   | 14   | 15   | dB    |
|                       |                 | BLK, SG34 = 100 mVp-p, Black level = 2 V        |                    |      |      |      |       |
| Output dynamic        | Damp1           | Same as in the AMP1 gain measurement.           |                    | 1.20 | 1.40 |      | Vp-p  |
| range                 | DAMP1           | Measure output dynamic range on TP32.           |                    | 1.20 | 1.40 |      | vp-p  |
| Black level           | Вамр1           | Measure the voltage on TP32. Pulse→CLP, BLK     |                    | 1.9  | 2.0  | 2.1  | V     |
| Gamma & Knee Circuits |                 |                                                 |                    |      |      |      |       |
| Gamma gain (1)        | Gγ1             | Apply signal 3 to SG34 and                      | SG34 = 100 mVp-p   | 310  | 410  | 510  | mVp-p |
| Gamma gain (2)        | G <sub>γ2</sub> | measure the amplitude on                        | SG34 = 30 mVp-p    |      | -6.4 |      |       |
| <b>3</b> ( )          |                 | TP28. SW34→(b), Pulse→CLP,                      |                    |      |      | dB   |       |
| Gamma gain (3)        | Gγз             | BLK, Input black level = 2 V   SG34 = 200 mVp-p |                    |      | 1.3  |      |       |


| PARAMETER                      | SYMBOL           | CONDITIONS                                                                                                                                                                                                                                                                                          |                                                                        | MIN.       | TYP.  | MAX. | UNIT  |
|--------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------|-------|------|-------|
| Gamma & Knee Circuits (contd.) |                  |                                                                                                                                                                                                                                                                                                     |                                                                        |            |       |      |       |
| Gamma OFF gain                 | GγOFF            | Apply signal 3 to SG34 and measure the amplitude on TP28. SW29, SW30, SW34→(b), Pulse→CLP, BLK, SG34 = 100 mVp-p, Black level = 2 V, V29 = 5 V, V30 = 5 V                                                                                                                                           |                                                                        | 450        | 510   | 580  | mVp-p |
|                                | (1) CL1          | Measure the amplitude of SW30→(a)                                                                                                                                                                                                                                                                   |                                                                        |            | 0     | 50   |       |
| Cleaning offset                | (2) CL2          | TP28 between BLK level and black level. Pulse→CLP, BLK                                                                                                                                                                                                                                              | SW30→(b),                                                              | -50<br>-50 | 0     | 50   | mV    |
| Frequency characteristic       | fγ               | Apply signal 4 to SG34. Increase the frequency of signal 4 until the frequency components of the signal on TP28 are 3 dB lower than that at f = 100 kHz, and measure the frequency of signal 4. SW34→(b), Pulse→CLP, BLK, SG34 = 100 mVp-p, Black level = 2 V                                       |                                                                        | 6.0        |       |      | MHz   |
| Aperture & AMP2 Cir            | cuits            |                                                                                                                                                                                                                                                                                                     |                                                                        |            |       |      |       |
| Aperture maximum gain          | Gармах           | Apply signal 3 to SG26 and measure the amplitude on TP21. SW26A→(b), Pulse→CLP, BLK, SG26 = 100 mVp-p,                                                                                                                                                                                              | SW25→(b),<br>V25 = 5 V                                                 | 840 1      | 1 130 |      |       |
| Aperture preset gain           | GAPPRE           |                                                                                                                                                                                                                                                                                                     |                                                                        | 740        | 840   | 940  |       |
| Aperture minimum gain          | GAPMIN           |                                                                                                                                                                                                                                                                                                     | SW25→(b),<br>V25 = 0 V                                                 |            | 420   | 520  | mVp-p |
| Base clip output               | BcL              |                                                                                                                                                                                                                                                                                                     | SW15 $\rightarrow$ (b), V15 = 0 V<br>SW25 $\rightarrow$ (b), V25 = 5 V |            | 350   | 450  |       |
| Delay line output              | DLout            | Apply signal 3 to SG34 and measure the amplitude on TP21. SW15, SW23, SW25, SW29, SW30, SW34→(b), Pulse→CLP, BLK, SG34 = 50 mVp-p, Black level = 2 V, V15 = V25 = V29 = V30 = 5 V, V23 = 1.2 V, V26 = 2.3 V                                                                                         |                                                                        | 1 100      | 1 700 |      | mVp-p |
| AMP2 maximum gain              | <b>G</b> AMP2MAX | Apply signal 3 to SG26 and measure the amplitude on                                                                                                                                                                                                                                                 | SG26 = 100 mVp-p,<br>V22 = 5 V                                         | 370        | 440   | 510  |       |
| AMP2 minimum gain              | Gамр2міN         |                                                                                                                                                                                                                                                                                                     | SG26 = 100  mVp-p,<br>V22 = 0  V                                       | 180        | 230   | 280  | mVp-p |
| Output dynamic range           | DAMP2            | Input black level = $2.3 \text{ V}$ ,<br>V <sub>15</sub> = V <sub>25</sub> = $0 \text{ V}$                                                                                                                                                                                                          | SG26 = 800  mVp-p,<br>V22 = 5  V                                       | 2 000      | 2 550 |      |       |
| Frequency characteristic       | fAMP2            | Apply signal 4 to SG26. Increase the frequency of signal 4 until the frequency components of the signal on TP21 are 3 dB lower than that at f = 100 kHz, and measure the frequency of signal 4.  SW15, SW25, SW26A→(b), V15 = 0 V, V25 = 0 V, Pulse→CLP, BLK, SG26 = 100 mVp-p, Black level = 2.3 V |                                                                        | 8.0        |       |      | MHz   |

| PARAMETER                            | SYMBOL | CONDITIONS                                                                                                                                                                                                                                           |                     | MIN. | TYP. | MAX. | UNIT |
|--------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------|------|------|------|
| Encoder Circuit                      | 1      |                                                                                                                                                                                                                                                      |                     |      |      |      |      |
| White clip (1)                       | WC1    | Apply signal 3 to SG20 and                                                                                                                                                                                                                           | SW19→(b), V19 = 5 V | 1.9  | 2.0  |      |      |
| White clip (2)                       | WC2    | measure the amplitude on                                                                                                                                                                                                                             | SW19→(b), V19 = 0 V |      | 0.85 | 0.95 | ,,   |
| White clip preset                    | WCPRE  | TP17A.<br>SW20→(b), Pulse→CLP, BLK                                                                                                                                                                                                                   | SW19→(a)            | 1.75 | 1.85 | 1.95 | V    |
| Setup (1)                            | SUP1   | Measure the amplitude of                                                                                                                                                                                                                             | SW18→(b), V18 = 5 V | 230  | 280  |      |      |
| Setup (2)                            | SUP2   | TP17A between BLK level and black level.                                                                                                                                                                                                             | SW18→(b), V18 = 0 V |      | -310 | -260 | mV   |
| Setup preset                         | SUPPRE | Pulse→CLP, BLK                                                                                                                                                                                                                                       | SW18→(a)            | -150 | -100 | -50  |      |
| SYNC level                           | Vsync  | Measure the amplitude of TP17A between SYNC level and black level. Pulse—CLP, BLK, SYNC                                                                                                                                                              |                     | 530  | 580  | 630  | mV   |
| Gain                                 | Gоит   | Apply signal 3 to SG20 and measure the amplitude on TP17A. SW20→(b), Pulse→CLP, BLK, SG20 = 1 Vp-p                                                                                                                                                   |                     |      | 0    | 1    | dB   |
| Output dynamic range                 | Dout   | Apply signal 3 to SG20 and measure the amplitude of TP17A between SYNC level and white level. SW19, SW20—(b), V19 = 5 V, Pulse—CLP, BLK, SYNC                                                                                                        |                     |      | 2.5  |      | Vp-p |
| Frequency characteristic             | fоит   | Apply signal 4 to SG20. Increase the frequency of signal 4 until the frequency components of the signal on TP17B are 3 dB lower than that at f = 100 kHz, and measure the frequency of signal 4. SG20 = 1 Vp-p, SW17, SW20—(b), Pulse—CLP, BLK, SYNC |                     | 10   |      |      | MHz  |
| Output voltage                       | Vout   | Apply signal 3 to SG20 and measure the amplitude of TP17B between SYNC level and white level. SG20 = 1.3 Vp-p, SW17, SW20→(b), Pulse→CLP, BLK, SYNC                                                                                                  |                     | 0.9  | 1.0  |      | Vp-p |
| Pulse Circuit                        |        |                                                                                                                                                                                                                                                      |                     |      |      |      |      |
| Clamp threshold voltage              | VFCDS  |                                                                                                                                                                                                                                                      |                     |      | 1.3  |      |      |
| Sample-hold                          | VFS    | Apply voltages to FCDS, FS, SYNC, BLK and CLP and measure the threshold voltage of each circuit.                                                                                                                                                     |                     |      | 1.5  |      |      |
| threshold voltage Synchronous signal |        |                                                                                                                                                                                                                                                      |                     |      |      |      |      |
| threshold voltage                    | VSYNC  |                                                                                                                                                                                                                                                      |                     |      | 2.5  |      | V    |
| Blanking threshold voltage           | VBLK   |                                                                                                                                                                                                                                                      |                     |      | 1.5  |      |      |
| Clamp threshold voltage              | VCP    |                                                                                                                                                                                                                                                      |                     |      | 3.5  |      |      |


# **Measurement Waveforms**




# **Test Circuit**



PACKAGES (Unit: mm)



